

Document Title	Identification of carbapenem producing Enterobaterieacea	
Document Type	Procedure	
Directorate/Institution	Diagnostic Laboratories Services at Directorate General of Specialized Medical Care (DGSMC) at Ministry of Health (MOH)	
Targeted Group	Medical laboratories	
Document Author	Dr Alwarith Al-Kharusi	
Designation	Consultant clinical microbiologist	
Document Reviewer	 Dr. Hanaa Al Araimi Ms. Zainab Al Hadhrami 	
Designation	 Consultant clinical microbiologist Senior technologist specialist A 	
Release Date	May 2023	
Review Frequency	Three Years	

Validated by	7	Approved by	ÿ
Name	Dr. Muna Habib	Name	Dr.Badryah Al Rashidi
Designation	Director Department Development & Conterol (DGQAC)	Designation	Director General of Primary Health Care
Signature	Muna.	Signature	j'
Date	May 2023	Date	June 2023

Contents Table:

Acr	onyms:	4
.1	Purpose	5
2.	Scope	5
3.	Definitions	5
4.	Procedure	5
5.	Responsibilities	9
6.	Document History and Version Control	.11
7.	References:	.11
8. A	Annexes	2

Acknowledgment

The diagnostic laboratories services at the Directorate General of Specialized Medical Care (DGSMC) at Ministry of Health (MOH) would like to thank and appreciate the great effort of the Microbiology documents development team. Participated and contributed personnel are:

Member name	Institution	Designation
Dr.Mahmoud Al Subhi	Rustaq Hospital	Team Leader
		Consultant medical microbiologist
Ms. Zainab Al Hadhrami	Directorate General of	Team Coordinator
	Specialized Medical Care	Senior technologist specialist A
Ms. Saleh Al Shukairi	Ibra Hospital	Senior technologist specialist A
Dr. Hanaa Al Auraimi	Royal Police of Oman	Consultant medical microbiologist
	Hospital	
Dr. Nawal AL Kindi	Khoula Hospital	Consultant medical microbiologist
Dr. Al Warith Al Kharusi	Nizwa Hospital	Consultant medical microbiologist
Dr. Abdulrahman Al	Ibri Hospital	Specialist microbiologist
Mahrouqi		pathologist
Dr. Nada Al Tamimi	Al Massara Hospital	Consultant medical microbiologist
Dr. Wafaa Al Tamtami	Armed Forces Hospital	Consultant medical microbiologist

Acronyms:

BA	Blood agar
CRE	Carbapenem resistant enterobacterales
СРЕ	Carbapenemase producing enterobacterales
ATCC	American Type Culture Collection
eCIM	EDTA carbapenem inhibition method
EDTA	Ethylenediamine tetra-acetic acid
ID	Identification
QC	Quality Control
М	Molar
MDRO	Multidrug Resistant Organism
MHT	Modified Hodge test
ml	Milli liter
SOP	Standard operating procedure
mCIM	Modified carbapenem inhibition method
TSB	Tryptone soy broth
ul	Micro liter

1. Purpose

This document describes the procedure for screening and detection of acquired carbapenemases enzymes

2. Scope

This document is applicable for all medical laboratories under MOH and other collaborative governmental and non-governmental health institutions.

3. Definitions

- 3.1 Carbapenemase: carbapenem hydrolysing Beta-lactamase enzyme. Many of which are encoded on plasmids
- 3.2 Carbapenems: A Beta lactam antibiotics class that is active in treating aerobic and anerobic gram positive and gram-negative bacteria. Examples are Ertapenem, Imipenem and Meropenem

4. Procedure

4.1. Clinical background:

Carbapenem-resistant Enterobacteriaceae (CRE) has spread rapidly around the world in the past few years, posing great challenges to human health. The plasmid-mediated horizontal transmission of carbapenem-resistance genes is the main cause of the surge in the prevalence of CRE. Therefore, the timely and accurate detection of CRE, especially carbapenemase-producing Enterobacteriaceae, is very important for the clinical prevention and treatment of these infections. Acquired carbapenemases are diverse and include three of four Ambler's molecular classes of β -lactamases. For more detail on types of classes and activities of different carbapenemases , see table 1. Knowing the type of carbapenemases will affect the choice of antibiotics treatment. For example the antibiotic avibactam-ceftazidim is most effective against KPC isolates.

Enzyme type	Classification	Activity spectrum	Organism(s)
	by ambler class		
КРС	А	All β-lactams	Enterobacterales; rare in P.
			aeruginosa
SME	А	Carbapenems and	S. marcescens
		aztreonam, but not	
		3rd/4th G cephalosporins	
NMC-A IMI	А	Carbapenems and	Enterobacter species; rare
		aztreonam, but not	in other Enterobacterales
		3rd/4th G cephalosporins	
GES	А	Depends on enzyme	P. aeruginosa and
		variant. Some are ESBLs,	Enterobacterales
		others e.g. GES-5 are	
		carbapenemases	
FRI	А	Carbapenems and	Enterobacter species
		aztreonam, but not	
		3rd/4th G cephalosporins	
IMP VIM NDM	В	All β-lactams except	Pseudomonas species;
GIM, DIM,		monobactams	Acinetobacter species;
SIM, SPM1		(aztreonam)	Enterobacterales
(metallo-			
βlactamases)			
OXA	D	Carbapenems	A. baumannii;
			Enterobacterales and rare
			in P. aeruginosa

Table 1- Examples of carbapenemases classification, activity and organisms

4.2. Principle:

A variety of methods for the rapid detection of CRE phenotypes and genotypes have been developed for use in clinical microbiology laboratories. Major methods currently used for screening and conformations of carbapenemase production are based on phenotypic findings or molecular detections of the carbapenemase encoding gene. Combining two methods are can be considered to be implemented by each lab in order to increase sensitivity and specificity of detection

Methods	Advantages	Disadvantages		
Modified Hodge test	1. Detecting KPC 2. Simple 1. False-positive and false-			
(MHT)	and inexpensive	negative		
		2. Insufficient for MBLs		
		3. Time consuming		
Colorimetric assay	1. Detecting KPC and most	1. Insufficient for OXA-48		
(Carba-NP)	MBLs 2. Type carbapenemases	2. Specific reagents		
	3. Simple and inexpensive	3. Various infecting factors		
Modified carbapenem	1. Detecting all	1. Time consuming		
inactivation method	carbapanemeses 2. Clear	2. Cannot distinguish		
(mCIM)	criteria of judgment	between serine and metallo-		
	3. Simple and cost-	carbapenemases		
	effectiveness			
Spectrophotometric	1. High sensitivity and 1. Specific instru			
method	specificity 2. Time saving (spectrophotometer)			
	3. Simple and inexpensive	2. Various influencing		
		factors		
		3. No standard equation and		
		cut-off value		
		4. Small sample size		
MALDI-TOF-based	1. Detecting KPC and NDM	1. Insufficient for OXA-48		
methods	2. Time saving	2. No clear protocol and		
	3. Easy to perform standard analysis			
	4. Low measurement cost	1 1 1		
Molecular-based	1. Gold standards	1. High technical		
detection methods	2. Detecting all requirements			
	carbapanemeses genes	2. Insufficient for expression		
	3. Type carbapenemase genes of genes			
	4. Time saving3. High measurement cost			

Table 2- The advantages and limitations of common detection methods

- 4.3. Pre analytical stage:
 - 4.3.1. Sample: fresh gram negative bacterial isolate with reduced susceptibility to carbapenem agent that is not known to be intrinsic.
 - 4.3.2. Safety precaution:
 - All specimens need to be treated as potentially infectious. Standard procedures for handling of biohazard material must be followed at all times. Universal Precautions must be practiced at all stages of these procedures.
 - 4.3.3. Quality control:
 - Check the expiry dates of all media, reagents and stains before use.
 - All media, reagents, kits, and stains **MUST** be quality controlled before use.
 - Identification tests should be run with appropriate controls.
 - Record the quality control results in the appropriate QC sheet.
- 4.4. Analytical stage:
 - 4.4.1 Carbapenemase-producing isolates of Enterobacterales usually test intermediate or resistant to one or more carbapenems .Testing resistant or Intermediate to ertapenem is often the most sensitive indicator of carbapenemase production and usually test resistant to one or more agents in cephalosporin subclass III (eg, cefoperazone, cefotaxime, ceftazidime, and ceftriaxone). However, some isolates that produce carbapenemases such as SME or IMI often test susceptible to these cephalosporins

4.4.2 Carbapenem inhibition method

- 4.4.2.1 Reagents and material:
 - TSB (2 mL aliquots)
 - Meropenem disks (10 µg)
 - 1-µL and 10-µL inoculation loops
 - Nutrient broth (eg, Mueller-Hinton, TSB) or normal saline (3.0–5.0 mL aliquots)
 - MHA plates.
 - Meropenem-susceptible indicator strain *E. coli* (ATCC 25922)
 - 0.5 M EDTA (only for eCIM)

4.4.2.2 Procedure (see annex, figure 2):

• mCIM procedure :

- 1. For each isolate to be tested, emulsify a 1- μ L loopful of bacteria for Enterobacterales or 10- μ L loopful of bacteria for *P*. *aeruginosa* from an overnight blood agar plate in 2 mL TSB.
- 2. Vortex for 10–15 seconds.
- 3. Add a 10-µg meropenem disk to each tube using sterile forceps or a single disk dispenser. Ensure the entire disk is immersed in the suspension.
- 4. Incubate at $35^{\circ}C \pm 2^{\circ}C$ in ambient air for 4 hours ± 15 minutes.
- Just before or immediately following completion of the TSBmeropenem disk suspension incubation, prepare a 0.5 McFarland suspension (using the colony suspension method) of E. coli ATCC 25922 in nutrient broth or saline.
- 6. Inoculate an MHA plate with E. coli ATCC 25922 as for the routine disk diffusion procedure making sure the inoculum suspension preparation and MHA plate inoculation steps are each completed within 15 minutes. Allow the plates to dry for 3–10 minutes before adding the meropenem disks.
- 7. Remove the meropenem disk from each TSB-meropenem disk suspension using a 10-µL loop by placing the flat side of the loop against the flat edge of the disk and using surface tension to pull the disk out of the liquid. Carefully drag and press the loop along the inside edge of the tube to expel excess liquid from the disk. Continue using the loop to remove the disk from the tube and then place it on the MHA plate previously inoculated with the meropenem-susceptible E. coli ATCC 25922 indicator strain.
- Invert and incubate the MHA plates at 35°C ± 2°C in ambient air for 18–24 hours.
- 9. Following incubation, measure the zones of inhibition as for the routine disk diffusion method.

- eCIM procedure :
 - 1. For each isolate, label a second 2-mL TSB tube for the eCIM test.
 - 2. Add 20 μ L of the 0.5 M EDTA to the 2-mL TSB tube to obtain a final concentration of 5 M EDTA.
 - 3. Follow steps 1 through 9 above as for mCIM procedure.
 - 4. Process the mCIM and eCIM tubes in parallel.
 - Place the meropenem disks from the mCIM and eCIM tubes on the same MHA plate inoculated with the meropenem-susceptible *E. coli* ATCC 25922 indicator strain.
- 4.4.2.3 Interpretation (see annex figures 3A, 3B, 4A, 4B, 4C, 4D):
 - mCIM :
 - Carbapenemase positive:
 - Zone diameter of 6–15 mm or presence of pinpoint colonies within a 16–18 mm zone
 - If the test isolate produces a carbapenemase, the meropenem in the disk will be hydrolyzed and there will be no inhibition or limited growth inhibition of the meropenem-susceptible E. coli ATCC 25922.
 - Carbapenemase negative:
 - Zone diameter of \geq 19 mm (clear zone)
 - If the test isolate does not produce carbapenemase, the meropenem in the disk will not be hydrolyzed and will inhibit growth of the meropenem-susceptible E. coli ATCC 25922.
 - Carbapenemase indeterminate:
 - Zone diameter of 16–18 mm
 - Zone diameter of \geq 19 mm and the presence of pinpoint colonies within the zone
 - The presence or absence of a carbapenemase cannot be confirmed.
 - eCIM (Interpret only when mCIM test is positive):

- Metallo-β-lactamase positive:
 - A ≥ 5-mm increase in zone diameter for eCIM vs zone diameter for mCIM (eg, mCIM = 6 mm; eCIM = 15 mm; zone diameter difference = 9 mm). For only the eCIM test, ignore pinpoint colonies within any zone of inhibition.
 - If the test isolate produces a metallo-β-lactamase, the activity of the carbapenemase will be inhibited in the presence of EDTA such that the meropenem in the disk will not be hydrolyzed as efficiently as in the tube without EDTA. The result is inhibition of the meropenem-susceptible E. coli and an increase in the zone diameter for the eCIM zone diameter compared with the mCIM zone diameter.
- Metallo-β-lactamase negative:
 - A ≤ 4-mm increase in zone diameter for the eCIM vs zone diameter of mCIM (eg, mCIM = 6 mm; eCIM = 8 mm; zone diameter difference = 2 mm). For only the eCIM test, ignore pinpoint colonies within any zone of inhibition.
 - If the test isolate produces a serine carbapenemase, the activity of the carbapenemase will not be affected by the presence of EDTA and there will be no or marginal (≤ 4 mm) increase in zone diameter in the presence of EDTA compared with the mCIM zone diameter.

	4.4.2.4 Reporting		
Test	Results	Reporting	
mCIM only	Negative	Carbapenemase not detected	
	Positive	Carbapenemase detected	
	Indeterminate	Testing inconclusive for the presence of carbapenemase	
mCIM and	mCIM Negative	Carbapenemase not detected	
eCIM	eCIM not set up		
combination	mCIM Postive	Serine carbapenemase detected	
	eCIM negative		
	mCIM Positive	Metallo-β-lactamase detected	
	eCIM Positive		
	mCIM Indeterminate	Testing inconclusive for the presence of carbapenemase	
	eCIM not set up		

Notes

- If indeterminate results are obtained on repeat testing, consider performing a different phenotypic test, molecular test or sending isolate to CPHL for confirmation
- If both a serine carbapenemase and a metallo-β-lactamase are co-produced by one organism, differentiation between enzymes will not be possible and false-negative eCIM results may occur.
- mCIM only: For some tests, pinpoint colonies of the indicator organism (*E. coli* ATCC® 25922) may be observed within the zone of inhibition. If the colonies are present within a 6- to 18-mm zone of inhibition, the test should be considered carbapenemase positive. If colonies are present within a ≥ 19-mm zone, the test should be considered indeterminant.
- eCIM only: Ignore pinpoint colonies within any zone of inhibition. Interpret results strictly based on the difference in zone diameters between the mCIM and eCIM tests

Test positive and	negative	OC strains	each day	of testing	а
Test positive and	negative	QC suams	each uay	or testing	

QC Strain	Organism Characteristics	Expected Results
<i>K. pneumoniae</i> ATCC BAA-170	KPCpositiveSerinecarbapenemase producer	mCIM positive eCIM negative
<i>K. pneumoniae</i> ATCC BAA-1706	Carbapenemase negative	mCIM negative
<i>K. pneumoniae</i> ATCC BAA-2146	NDM positive Metallo-β- lactamase producer	mCIM positive eCIM positive

^a In addition, perform QC of meropenem disks and test media daily or weekly following the routine disk diffusion QC procedure

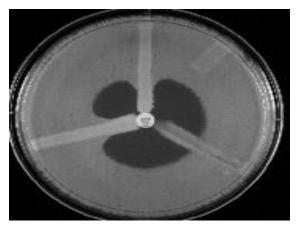
4.4.3 Modified Hodge Test (MHT)

4.4.3.1 Reagent and material

Reagents	Consumables/Supplies	Equipment
 Mueller Hinton agar (MHA) 10 μg meropenem susceptibility disk Distal water 	 Sterile cotton-tipped swabs 1 ml sterile pipette Sterile loop 	 Nephlometer/ MacFarlane standard turbidity meter device Vortex 35C ambient air incubator

4.4.3.2 Quality control strains

- MHT Positive *Klebsiella pneumoniae* ATCC BAA-1705
- MHT Negative Klebsiella pneumoniae ATCC BAA-1706
- 4.4.3.3 Procedure


Step 1	Prepare a 0.5 McFarland dilution of the <i>E.coli</i> ATCC 25922 in 5 ml of broth or saline
Step 2	Dilute 1:10 by adding 0.5 ml of the 0.5 McFarland to 4.5 ml of MHB or saline.
Step 3	Streak a lawn of the 1:10 dilution of <i>E.coli</i> ATCC 25922 to a Mueller Hinton agar plate and allow to dry 3–5 minutes.
Step 4	Place a 10 µg meropenem or ertapenem susceptibility disk in the center of the test area.
Step 5	In a straight line, streak test organism from the edge of the disk to the edge of the plate. Up to four organisms can be tested on the same plate with one drug.
Step 6	Incubate overnight at $35OC \pm 2OC$ in ambient air for 16–24 hours

4.4.3.4 Interpretation

After 16–24 hours of incubation, examine the plate for a clover leaf-type indentation at the intersection of the test organism and the E. coli 25922, within the zone of inhibition of the carbapenem susceptibility disk.

MHT Positive test has a clover leaf-like indentation of the *E.coli* 25922 growing along the test organism growth streak within the disk diffusion zone.

MHT Negative test has no growth of the E.coli 25922 along the test organism growth streak within the disc diffusion

4.4.3.5 Reporting

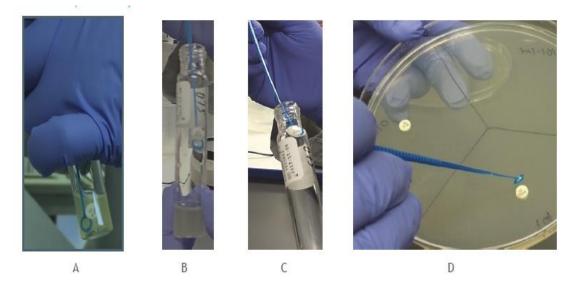
Figure 1 .The MHT performed on a 100 mm MHA plate. At 7 o'clock is K. pneumoniaeATCC BAA 1705, positive result . At 4 o'clock is *K. pneumoniae*ATCC BAA 1706, negative result; and at 12 o'clock is a clinical isolate, positive result

MHT positive : carbapenemase production is detected MHT negative : carbapenemase production not detected Post – analytical stage:

5. Responsibilities

- 5.1. Responsible staff:
 - To ensure the adherence to critical result communication procedure
 - To facilitate the alternative channels once needed
- 5.2. Quality manager /officer
 - To follow up the implementation of the procedure
 - To monitor regularly communication of critical results and raise non-conformance with corrective action once needed.
- 5.3. All lab staff:
 - To adhere to the procedure.

- To document record and release results as recommended
- To report test failures or inciden


6. Document History and Version Control

Version	Description	Review Date
1	Initial Release	May 2026

7. References

Title of book/ journal/ articles/ Website	Author	Year of publication	Page
CLSI. <i>Performance Standards for Antimicrobial</i> <i>Susceptibility Testing.</i> 32nd ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2022.	Clinical and Laboratory Standards Institute	2022	122- 146
UK Standards for Microbiology Investigations Detection of bacteria with carbapenem-hydrolysing β-lactamases (carbapenemases)	NHS, UK	2022	1-32
Combination of modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) for phenotypic detection of carbapenemase-producing Enterobacteriaceae	Tsai et al. BMC Microbiology (2020) 20:315	2020	

8. Annexes:

Figure 2. Procedure for Placing Meropenem Disks for the mCIM. Remove the meropenem disk with a 10- μ L loop (A) and drag the loop against the inside edge of the tube to expel any excess liquid (B). Use the same loop to remove the disk from the tube (C) and place it on the MHA plate (D) previously inoculated with the meropenem-susceptible *E. coli* (ATCC 25922) indicator strain.

Figure 3 A mCIM Results for QC Strains: Negative Control *K. pneumoniae* ATCC®BAA-170 (A) and Positive Control *K. pneumoniae* ATCC BAA-1705 (B). NOTE: A narrow ring of growth around the meropenem disk as seen with the negative control (A) results from carryover of the test organism in the TSB and should be ignored.

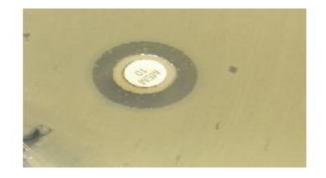
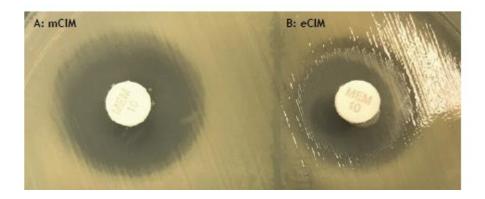
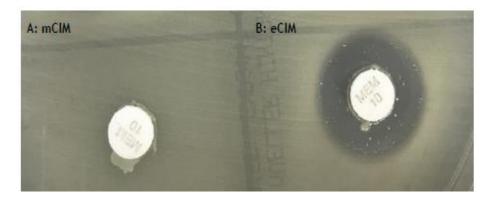




Figure 3 B. mCIM Test Interpretation Result: positive mCIM Report: carbapenemase detected NOTE: A narrow ring of growth around the meropenem disk results from carryover of the test organism in the TSB and should be ignored

Figure 4 A. mCIM and eCIM Test Interpretation: Negative mCIM. "A" shows an mCIM negative result (zone diameter = 20 mm) and "B" shows an eCIM invalid result. Do not interpret the eCIM result when the mCIM is negative as the isolate is negative for carbapenemase production. Result: negative for carbapenemase production

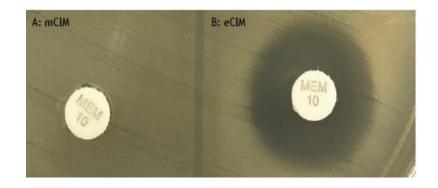

Report: carbapenemase not detected

Figure 4 B. mCIM and eCIM Test Interpretation: Positive mCIM and eCIM. "A" shows an mCIM positive result (zone diameter of 6 mm) and "B" shows an eCIM positive result (zone diameter = 15 mm with pinpoint colonies throughout the zone of inhibition). **NOTE:** The pinpoint colonies throughout the zone of inhibition are ignored when measuring the zone for the eCIM test. A \geq 5-mm increase in zone diameter for eCIM vs zone diameter for mCIM (15 mm - 6 mm = 9 mm) demonstrates the inhibition of the metallo- β -lactamase in the presence of EDTA.

Result: positive mCIM and eCIM

Report: metallo- β -lactamase detected

Figure 4 C. mCIM and eCIM Test Interpretation: Positive mCIM and eCIM. "A" shows an mCIM positive result (zone diameter = 6 mm) and "B" shows an eCIM positive result (zone diameter = 19 mm). A \geq 5-mm increase in zone diameter for eCIM vs diameter for mCIM zone (19 mm - 6 mm = 13 mm) demonstrates the inhibition of the metallo- β -lactamase in the presence of EDTA.

Result: positive mCIM and eCIM

Report: metallo- β -lactamase detected

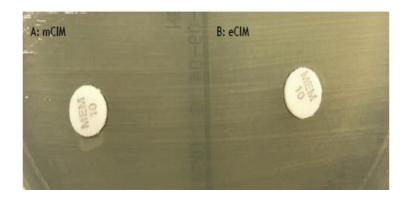


Figure 4 D. mCIM and eCIM Test Interpretation: Positive mCIM and Negative eCIM. "A" shows an mCIM positive result (zone diameter = 6 mm) and "B" shows an eCIM negative result (zone diameter = 6 mm). Serine carbapenemases are not inhibited by EDTA and demonstrate $a \le 4$ -mm increase in zone diameter for eCIM vs zone diameter for mCIM. Result: positive mCIM and negative eCIM

Report: serine carbapenemase detected