

| Document Title          | CSF specimens investigations                                                                                                  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Document Type           | Procedure                                                                                                                     |  |  |  |
| Directorate/Institution | Diagnostic Laboratories Services at Directorate General of<br>Specialized Medical Care (DGSMC) at Ministry of Health<br>(MOH) |  |  |  |
| Targeted Group          | Medical laboratories                                                                                                          |  |  |  |
| Document Author         | Dr. Hanaa Al Auraimi                                                                                                          |  |  |  |
| Designation             | Consultant medical microbiologist                                                                                             |  |  |  |
| Document Reviewer       | Microbiology documents development team                                                                                       |  |  |  |
| Designation             | Microbiology documents development team                                                                                       |  |  |  |
| Release Date            | May 2023                                                                                                                      |  |  |  |
| <b>Review Frequency</b> | Three Years                                                                                                                   |  |  |  |

| Validated by |                                                           | Approved by |                                            |  |
|--------------|-----------------------------------------------------------|-------------|--------------------------------------------|--|
| Name         | Dr. Muna Habib                                            | Name        | Dr.Badryah Al Rashidi                      |  |
| Designation  | Director Department<br>Development & Conterol<br>( DGQAC) | Designation | Director General of Primary<br>Health Care |  |
| Signature    | Muna.                                                     | Signature   | , · · S                                    |  |
| Date         | May 2023                                                  | Date        | June 2023                                  |  |

# Acknowledgment

The diagnostic laboratories services at the Directorate General of Specialized Medical Care (DGSMC) at Ministry of Health (MOH) would like to thank and appreciate the great effort of the Microbiology documents development team. Participated and contributed personnel are:

| Member name                     | Institution              | Designation                    |
|---------------------------------|--------------------------|--------------------------------|
| Dr.Mahmoud Al Subhi             | Rustaq Hospital          | Team Leader                    |
|                                 |                          | Consultant medical             |
|                                 |                          | microbiologist                 |
| Ms. Zainab Al Hadhrami          | Directorate General of   | Team Coordinator               |
|                                 | Specialized Medical Care | Senior technologist specialist |
|                                 |                          | А                              |
| Ms. Saleh Al Shukairi           | Ibra Hospital            | Senior technologist specialist |
|                                 |                          | А                              |
| Dr. Hanaa Al Auraimi            | Royal Police of Oman     | Consultant medical             |
|                                 | Hospital                 | microbiologist                 |
| Dr. Nawal AL Kindi              | Khoula Hospital          | Consultant medical             |
|                                 |                          | microbiologist                 |
| Dr. Al Warith Al Kharusi        | Nizwa Hospital           | Consultant medical             |
|                                 |                          | microbiologist                 |
| Dr. Abdulrahman Al              | Ibri Hospital            | Specialist microbiologist      |
| Mahrouqi                        |                          | pathologist                    |
| Dr. Nada Al Tamimi              | Al Massara Hospital      | Consultant medical             |
|                                 |                          | microbiologist                 |
| Dr. Wafaa Al Tamtami            | Armed Forces Hospital    | Consultant medical             |
|                                 |                          | microbiologist                 |
| <u>Carradarilla and a surra</u> | I                        | 1                              |

## **Contributors:**

• Ms. Hanaa Al Shaqsi, Rustaq Hospital, Senior technologist specialist A

# Table of content

| Acronyms:                               | 4  |
|-----------------------------------------|----|
| 1. Purpose                              |    |
| 2. Scope                                | 5  |
| 3. Definitions                          | 5  |
| 4. Procedure                            | 5  |
| 5. Responsibilities                     | 24 |
| 6. Document History and Version Control | 25 |
| 7. References:                          | 26 |
| 8.Annexes                               | 27 |
|                                         |    |

# Acronyms:

| BA   | Blood agar                                  |
|------|---------------------------------------------|
| СА   | Chocolate agar                              |
| CSF  | Cerebral Spinal Fluid                       |
| MAC  | MacConkey                                   |
| ATCC | American Type Culture Collection            |
| H&S  | Health and Safety                           |
| ID   | Identification                              |
| IQC  | Internal Quality Control                    |
| MDRO | Multidrug Resistant Organism                |
| MRSA | Methicillin Resistant Staphylococcus aureus |
| SOP  | Standard operating procedure                |
| TAT  | Turnaround time                             |
| WHO  | World Health Organization                   |
| PMN  | polymorphonuclear leukocyte.                |
| PCR  | polymerase chain reaction;                  |
|      |                                             |

#### 1. Purpose

This standard operating procedure provides instruction on cerebral spinal fluid (CSF) investigations. The document will not include the CSF shunt fluid.

## 2. Scope

This document is applicable for all medical laboratories under MOH and other collaborative governmental and non-governmental health institutions.

# 3. Definitions

- 3.1. Meningitis is defined as inflammation of the protective membrane covering the brain or spinal cord (meninges).
- 3.2. Xanthochromic : is described as the yellowish appearance of CSF that occurs after several hours of bleeding into the subarachnoid space.
- 3.3. Newborn infant (neonate): is a child under 28 days of age.
- 3.4. Infant: child under the age of one year.

# 4. Procedure:

#### 4.1. Clinical background

- 4.1.1. Meningitis is defined as inflammation of the meninges. This process may be acute or chronic and infective or non-infective. Many infective agents have been shown to cause meningitis, including viruses, bacteria, fungi and parasites.
- 4.1.2. Cerebrospinal fluid (CSF) is a fluid that surrounds the brain and spinal cord. CSF is taken when meningitis, encephalitis, brain abscess or other neurological infections are suspected.
- 4.1.3. Normal CSF contains zero to very few cells and the presence, number and type of cells can indicate whether bacterial, viral, parasitic or noninfectious aetiologies are likely( refer to table1 for normal reference ranges )
- 4.1.4. For the commonly isolated organisms, refer to the following table.

| Age group            | Pathogen                                               |
|----------------------|--------------------------------------------------------|
| New born infants     | group B streptococci (early onset <7 days)             |
|                      | L. monocytogenes ( early onset)                        |
|                      | <i>E. coli</i> and other Gram negative enteric bacilli |
|                      | (early +late onset)                                    |
| Infants and Children | S. pneumoniae                                          |
|                      | N. meningitides                                        |
|                      | <i>H. influenzae</i> type b                            |
| Children > 5years &  | S. pneumoniae                                          |
| Adults               | N. meningitidis                                        |
| Elderly              | S. pneumoniae                                          |
|                      | N. meningitidis                                        |
|                      | <i>L. monocytogenes</i> , aerobic gram –ve Bacilli     |
| With risk factors    | S. pneumoniae                                          |
|                      | L. monocytogenes                                       |
|                      | H. influenzae                                          |
| Post trauma          | Staphylococci and Streptococci                         |
| and Post Surgery     | S. pneumoniae                                          |
|                      | Coliforms                                              |
|                      | Pseudomonas aeruginosa                                 |
|                      | Anaerobes                                              |
|                      |                                                        |

Table 1: Causes of Bacterial Meningitis (modified from; Mims at al., 2004)

| Other | Mycobacterium tuberculosis |
|-------|----------------------------|
|       | Salmonella spp.            |
|       | Brucella                   |
|       | Spirochaetes               |

# 4.2. Principle

Cerebrospinal fluid (CSF) is a key tool in the diagnosis of meningitis. Analysis of the CSF abnormalities produced by bacterial, viral, mycobacterial, and fungal infections may greatly facilitate diagnosis and direct initial therapy.

# 4.3. Important note:

- 4.3.1 CSF is an urgent specimen that should be analyzed within one (1) hour from time of collection. If there is a delay in processing, the fluid should be kept at room temperature.
- 4.3.2 If more than one hour has passed since collection, the specimen will be processed with the comment "Results may be erroneous due to a delay in transit/processing".
- 4.3.3 Notify all high cell count, positive gram stain or cultures to microbiologist / staff nurse or physician.

# 4.4. Pre- analytical stage:

#### 4.4.1 Sample

- 4.4.4.1 Cerebral spinal fluid must be collected aseptically into sterile labelled universal containers. It should be delivered to the laboratory immediately after collection and transported at room temperature.
- 4.4.4.2 If possible, it is better to notify laboratory personnel before specimen collection to ensure staff is ready for testing immediately after collection.

- 4.4.3 Specimens should be always delivered to laboratory personnel by hand - never drop specimens off or, leave unattended. Don't send CSF through pneumatic tube.
- 4.4.4 CSF is normally collected sequentially into three or more separate containers (1-5 ml per tube) which should be labelled and numbered consecutively .10ml is desirable for investigation of suspected Mycobacterium tuberculosis infection.
- 4.4.5 All tubes must be labelled properly and delivered immediately to the following sections (refer to appendix 1: algorithm of CSF processing):
  - Tube #1: for protein and glucose or serology study.
  - Tube #2: for culture and gram stain.
  - Tube #3: for cell count and differential
  - Tube #4: Other tests as required cytology, virology
- 4.4.4.6 If only one tube is collected, Microbiology (culture and gram stain) tests are performed first, then cell count and finally chemistry, to preserve specimen and avoid contamination.
- 4.4.4.7 If £ 1 ml is received, do not centrifuge. Inoculate the media directly and prepare the Gram stain, cell count and differential cell count.
- 4.4.4.8 If the volume is > 1 ml the specimen should be centrifuged prior to inoculating media and preparing the Gram and Giemsa for cell differential.
- 4.4.4.9 If several tests are requested and there is limited volume of fluid, contact the physician regarding the priorities of testing and process accordingly.
- 4.4.4.10 Clotted specimens are not satisfactory for testing. If the specimen is clotted, the clot should be broken up with a sterile pipette and a portion used to make a smear for Gram stain. The

cell count cannot be performed. Notify the physician immediately.

# 4.4.2 Materials

| Reagents        | Consumables/Supplies  | Equipment                  |
|-----------------|-----------------------|----------------------------|
| Normal saline   | Slides                | Slide dryer                |
| Blood Agar      | Cover slip            | Microscope                 |
| Chocolate Agar  | Neubauer Chamber      | Centrifuge / Cytospin      |
| India ink stain | capillary tube        | Incubators, including CO2, |
| Gram stain      | 15 µL sterile pipette | Aerobic and 30°C.          |
| Geimsa stain    |                       |                            |
| Saline / WBC    |                       |                            |
| diluting fluid  |                       |                            |

# 4.4.3 Safety Precautions

- 4.3.1.1. Standard procedures for handling of biohazard material must be always followed.
- 4.3.1.2. CSF specimen should be collected in sterile leak proof container and transported in a sealed plastic bag.
- 4.3.1.3. The processing of most diagnostic work can be carried out at Containment Level 2 unless infection with N. meningitidis, or hazard group 3 organism is suspected.
- 4.3.1.4. Due to the severity of the disease and the risks associated with generating aerosols of N. meningitidis , any manipulation of suspected isolates of should always be undertaken in a microbiological safety cabinet until N. meningitidis has been ruled out .
- 4.3.1.5. Where Hazard Group 3 Mycobacterium species are suspected, all specimens must be processed in a microbiological safety cabinet under full containment level 3 conditions

#### 4.4.4 Quality Control

- 4.4.4.1 Check the expiry dates of all media, reagents and stains before use.
- 4.4.4.2 All media, reagents, kits, and stains **MUST** be quality controlled before use.
- 4.4.4.3 Identification tests should be run with appropriate controls.
- 4.4.4.4 Record the quality control results in the appropriate QC sheet.

#### 4.5. Analytical stage:

#### 4.4.5 <u>Macroscopic examination:</u>

4.4.5.1 Estimate the volume and record it.

- 4.4.5.2 In good lighting conditions describe the appearance of the CSF.
- 4.4.5.3 Descriptions include turbidity, Xanthochromic (yellow stained), and if blood stained or Clot present. Spider web' clot is rare but suggestive of M. tuberculosis.
- 4.4.5.4 Note: A normal CSF is clear, bright, and colourless.

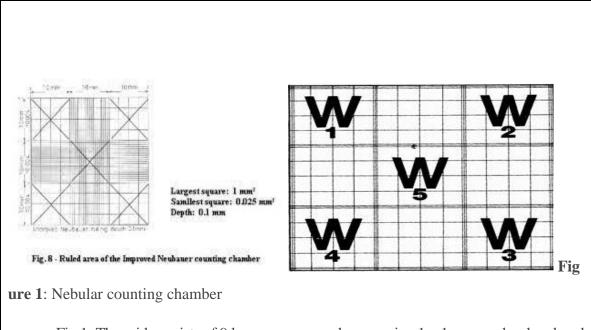
#### 4.4.6 Total cell count

- 4.4.6.1 Cell counts should not be performed on specimens containing a clot (which invalidates the result).
- 4.4.6.2 Perform total WBC and RBC counts on the <u>un-centrifuged</u> specimen in a Neubauer Chamber.
- 4.4.6.3 Mix the specimen and estimate (based on turbidity) if the specimen can be counted diluted or undiluted.
- 4.4.6.4 Prepare and charge Neubauer counter chamber.
- 4.4.6.5 Draw up well mixed specimen using capillary tube or 15  $\mu$ L pipette.
- 4.4.6.6 Place the end of the capillary tube against Neubauer counter chamber and charge both sides with the fluid. Very little pressure is needed the counter chamber should fill by capillary action.
- 4.4.6.7 Be careful not to over or under-fill and do not bump the cover slip or the count will be inaccurate.

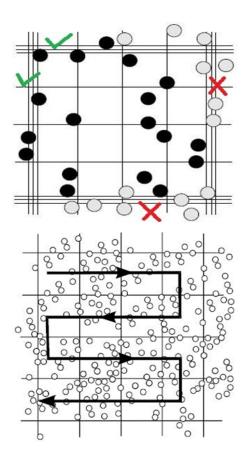
- 4.4.6.8 Wait for 2 minutes for the cells in the CSF to settle and then perform cell count
- 4.4.6.9 Perform total WBC and RBC counts on the un-centrifuged specimen in a Neubauer Chamber.
  - Before starting the count, use the 40 objective to check that the cells are WBC.
  - Count cells in 5 of the large squares (W1, W2, W3, W4, W5) using the 10× objective as shown in Figure 1.
  - If no WBCs are seen, report the count as zero.
  - Calculate total number of cell according to the following formula to get the number of cells/ cu mm

#### Number of cells counted) x (dilution factor)

#### (Number of squares counted) x (volume of 1 square)


- If cells are present in large numbers, count square 5 only.
- If there are too many cells to be counted, repeat the whole procedure with dilution.

Note 1: Cells touching the upper and left limits should be counted, unlike cells touching the lower and right limits, which should not be taken into account. Refer to figure 2.


Note 2: It will become very easy to get lost when counting the cells. In this case use the zigzag counting technique as in figure 3.

- Dilutions must be prepared in sterile specimen tubes and labeled accordingly. The most commonly used dilutions are prepared as follows:
  - 0 1:10 0.1 mL sample to 0.9 mL of 0.85%
    Saline(normal )/ WBC diluting fluid. Multiply the count by 10 (dilution factor)

- 1:100 0.1 mL of the 1:10 dilution to 0.9 mL of 0.85%
  Saline(normal) / WBC diluting fluid.
- Use only calibrated pipettes to perform dilutions.
  Multiply the count by 100 (dilution factor).



- Fig 1: The grid consists of 9 large squares, each measuring 1 x 1 mm, and a chamber d epth of 0.1 mm. Each square has a total volume of 0.1 mm3 (i.e.0.1 µl).
- Each large square (except the middle square) is divided into 16 smaller squares, each with an area of 0.0625 mm2.
- c) The large square in the middle is divided into 25 squares, each with an area of 0.04 mm2 which are in turn are divided into 16 smaller squares, each with an area of 0.0025 mm2.



**Figure 2**: method of counting the cells near the upper and lower limits.

Figure 3: zigzag counting technique

#### 4.4.7 Gram stain of the CSF specimen:

- 4.4.7.1 Label a clean microscopic slide with the laboratory specimen number.
- 4.4.7.2 Pipette one drop of the cyto-centrifuged deposit CSF onto the slide and allow heat dry.
- 4.4.7.3 Then add another drop on top and allow to dry (this improves the detection of bacteria).
  - If the sample is clotted, break up the clot as much as possible using sterile pipette.
  - Record the presence of RBCs, WBCs, bacteria and yeast.

#### 4.4.8 Differential Leukocyte count Using Giemsa Stain:

- 4.4.8.1 If the CSF WBC count is above the upper limit of normal for age, prepare a smear of concentrated (centrifuged) CSF, air dry, and stain with Giemsa stain.
- 4.4.8.2 Estimate the percentage of each WBC type: polymorphonuclear neutrophils (PMNs) have lobed nuclei and lymphocytes have a single round nucleus as shown bellow:

| 6                     |                  |                  | C                                                  |                                                        |
|-----------------------|------------------|------------------|----------------------------------------------------|--------------------------------------------------------|
| Neutrophil            | Eosinophil       | Basophil         | Monocyte                                           | Lymphocyte                                             |
| polymorph             |                  |                  |                                                    |                                                        |
| Medium size* (10-     | Medium size (10- | Small (8-14 µm); | Largest cell (12-                                  | Smallest cell (8-                                      |
| 14µm);                | 14µm);           |                  | 18µm;                                              | 12µm);                                                 |
| nucleus with >2 lobes | lobed nucleus    | bi-lobed nucleus | less dense, large,<br>horse-shoe shaped<br>nucleus | dense circular<br>nucleus taking up<br>most of the WBC |
| nuclear strands       | nuclear material |                  |                                                    |                                                        |

#### 4.4.9 Other test :

4.4.9.1 Those tests are not performed as a routine unless they are requested by the physician or if clinically indicated. Those tests includes the following:

#### 4.4.10 Examination for C. neoformans

4.4.10.1 Mix a drop of the centrifuged deposit with a drop of 50% aqueous India ink or nigrosin on a clean microscope slide and cover with a cover slip.

4.4.10.2 Examine for the presence of round or oval yeasts with a clear halo around the cell, indicating the presence of a capsule. The presence of a capsule permits a presumptive identification of *C*. *neoformans* 

#### 4.4.11 Examination for amoebae :

- 4.4.11.1 Examine both uncentrifuged and centrifuged deposits as wet preparations. Place a drop of specimen on a clean microscope slide, cover with a coverslip and examine for amoebic trophozoites
- 4.4.11.2 If culture negative result from clinically ill patient consider other non-culture methods for diagnosis eg 16S PCR, MALDI TOF, etc.

#### 4.4.12 Examination for Cryptococcal antigen test :

It is performed if requested or if an India ink stain is requested. CSF cryptococcal antigen testing should be carried out in all cases of suspected cryptococcal meningitis, and all cases of meningitis in immunocompromised patients in which there is an elevated CSF white cell count and no alternative diagnosis has been made.

# **4.4.13 Examination for Bacterial antigen screen panel**: refer to the kit insert.

The routine use of Latex Agglutination Test is not recommended due to poor sensitivity and specificity.

#### 4.4.14 PCR tests :

PCR can be used for diagnosis of viral, culture negative bacterial or TB meningitis.

#### 4.4.15 Culture set up:

4.4.15.1 With a sterile pipette inoculate each agar with the cyto-centrifuged deposit. If the specimen is clotted inoculate the clot fragments to each agar plate.

# 4.4.15.2 Culture the centrifuged specimen into the following media:

| Media                            | Clinical indication                                                                                           | Incubation  |           | Length of  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------|-------------|-----------|------------|--|
|                                  |                                                                                                               | temperature | Incubator | incubation |  |
| Blood agar (BA)                  |                                                                                                               | 35±2°C      | CO2       | 48 hrs     |  |
| Chocolate agar (CA)              | All CSF samples                                                                                               | 35±2°C      | CO2       | 48 hrs     |  |
| MacConkey                        | _                                                                                                             | 35±2°C      | Aerobic   | 48 hrs     |  |
| Sabouraud agar                   | If cryptococcal antiger                                                                                       | 35±2°C      | Aerobic   | 2-5 days   |  |
| (SAB)*                           | or India ink requested Or<br>yeasts seen<br>Or knowr<br>immunocompromised                                     |             |           |            |  |
| Blood Agar Plate wit<br>MTZ disc | hBrain abscess<br>Ventriculitis<br>Reservoirs<br>Post neurosurgery<br>Post otitis media with<br>complications | 35±2°C      | anaerobic |            |  |

- 4.4.15.3 Send an aliquot to the TB section to the PHL if TB is requested.
- 4.4.15.4 Send an aliquot to virology if viral investigation is requested.
- 4.4.15.5 If PCR or HSV (Herpes simplex virus) is requested, to be approved by microbiologist / pathologist.

# 4.4.16 Isolation and identification:

- 4.4.16.1 Identify all isolates growing on the agar plates.
- 4.4.16.2 For positive culture, do further identification at species level and antibiotic sensitivity testing (AST).
- 4.4.16.3 Report final identification of organism and susceptibility as appropriate

MoH/DGSMC/SOP/022/Vers.01

May 2023

#### 4.4.17 Susceptibility testing:

4.4.17.1 Report susceptibilities as clinically indicated.

- 4.4.17.2 Prudent use of antimicrobials according to local and national protocols is recommendedd
- 4.4.17.3 Do not report antibiotics that cannot cross the blood brain barrier: e.g. Cefazolin, cefuroxime, erythromycin, clindamycin, gentamicin, tobramycin, amikacin, and ciprofloxacin

#### 4.4.18 Interpretations:

#### 4.4.18.1 Macroscopic examination interpretation :

- Normal CSF: is normally clear, colorless, and hypocellular. Any turbidity or color presence is abnormal.
- To differentiate a traumatic tap from subarachnoid hemorrhage:
- Traumatic tap staining of the (3) tubes of CSF is uneven, being greatest in the first tube, and least in the last tube. After centrifugation, the supernatant is colorless and the specimen tends to clot.
- Subarachnoid hemorrhage the blood is evenly mixed, the supernatant becomes yellowish within a few hours after the hemorrhage, and the fluid will not clot.
- Pink color indicates RBC lysis and hemoglobin release. It can be seen 4 to 10 hours after a subarachnoid hemorrhage.
- Yellow or xanthochromic indicates pathologic bleeding resulting from hemoglobin breakdown to bilirubin in the subarachnoid space. Xanthochromia persists for 2 to 3 weeks after

May 2023

hemorrhage. It is also caused by a very high protein concentration in the CSF or by liver disease.

• Brown - indicates the presence of methemoglobin, which forms after a subdural or intracerebral hematoma.

| Infection    | differential | Glucose level  | Opening pressure            | Protein   | White blood   | Other studies                   |
|--------------|--------------|----------------|-----------------------------|-----------|---------------|---------------------------------|
| type         |              |                |                             | level     | cell count    |                                 |
| Bacterial    | Usually 80%  | < 40 mg per dL | Adult and children 8        | Almost    | Usually 1,000 | Gram stain, CSF culture, CSF    |
| (typical)*   | to 90% PMNs: | (2.22mmol per  | years and older: 200        | always    | to 5,000 per  | lactate (> 35.1mg per dL        |
|              | > 50%        | L) in 50% to   | to 500 mm H <sub>2</sub> O  | elevated  | μL            | [3.9mmol per L]), PCR testing:  |
|              | lymphocytes  | 60% of cases;  |                             |           | 99% of        | if Gram stain is negative and   |
|              | possible     | CSF: serum     | Children younger            |           | children have | antibiotics were given before   |
|              |              | glucose ratio  | than 8 years can have       |           | > 100 per µL  | lumbar puncture                 |
|              |              | <0.4 is 80%    | lower pressures             |           |               |                                 |
|              |              | sensitive and  |                             |           |               |                                 |
|              |              | 98% specific   |                             |           |               |                                 |
| Cryptococcal | Lymphocyte   | Usually > 40   | >250 mm H <sub>2</sub> O in | Usually < | Usually       | CSF culture, CSF Cryptococcal   |
|              | predominance | mg per dL      | severe cases: serial        | 40 mg     | mildly        | antigen test, India ink capsule |
|              |              |                | lumber punctures or         | per dL    | elevated;     | stain, latex agglutination,     |
|              |              |                | ventriculoperitoneal        | (400mg    | normal count  | enzyme immunoassay, lateral     |
|              |              |                | shunt required to           | per L)    | possible,     | flow assay, HIV test            |
|              |              |                | drain CSF in pressure       |           | especially in |                                 |
|              |              |                | persistently > 250          |           | patients with |                                 |

# 4.4.18.2 CSF characteristics by Infection Type (cell count, biochemical, culture ....).

|               |                |             | mm H <sub>2</sub> O  |           | HIV infection   |                                 |
|---------------|----------------|-------------|----------------------|-----------|-----------------|---------------------------------|
| Fungal        | Possible early | Significant | Variable             | 50 - 250  | Usually         | CSF (1-3)-beta-D-glucan         |
| (Excluding    | PMNs           | decrease    |                      | mg per    | elevated, up to | (elevated level is 95% to 100%  |
| cryptococcal) | progressing to | possible    |                      | dL (500 – | several         | sensitive and 83% to 99%        |
|               | lymphocyte     |             |                      | 2500 mg   | hundred per     | specific). CSF fungal culture,  |
|               | predominance.  |             |                      | per L)    | μL              | Gram stain (hyphae), PCR test   |
|               | Eosinophils    |             |                      |           |                 | is only 29% sensitive           |
|               | possible       |             |                      |           |                 |                                 |
| Neurosyphilis | Variable       | Possibly    | Usually elevated in  | >45 mg    | Early stage:    | HIV test, CSF VDRL test (30%    |
|               |                | decreased   | immunocompetent      | per Dl    | 10 to 400 per   | to 75% sensitive and 100%       |
|               |                |             | patients: may not be | (450mg    | μL              | specific†), CSF fluorescent and |
|               |                |             | elevated in          | per L)    | Late stage: 5   | treponemal antibody absorption  |
|               |                |             | Immunocompromised    |           | to 100 per μL   | test (100% sensitive and 50% to |
|               |                |             | patients             |           | Declines over   | 70% specific)                   |
|               |                |             |                      |           | decades         |                                 |

| Parasitic    | Eosinophilia   | Usually low      | Variable but can be    | Usually   | 150 to 2,000  | PCR test; enzyme-linked         |
|--------------|----------------|------------------|------------------------|-----------|---------------|---------------------------------|
|              | (>10           | normal or        | persistently elevated. | elevated  | per µL        | immunosorbent assay or          |
|              | eosinophils    | normal           | Requiring CSF          |           |               | Angiostrongylus cantonensis,    |
|              | per µL         |                  | draining               |           |               | Gnathostoma spinigerum and      |
|              | or > 10% of    |                  |                        |           |               | Baylisascaris procyonis         |
|              | total cells)   |                  |                        |           |               |                                 |
| Tuberculosis | Early          | Median: 40 mg    | Variable depending     | Usually   | Usually 5 to  | Multiple culture with acid-fast |
|              | lymphocyte     | per dL: lower in | on stage               | 100 to    | 300 per µL:   | stain; PCR test (50% sensitive  |
|              | and PMN        | advanced stages  |                        | 200 mg    | 500 to 1,000  | and 98% specific), CSF          |
|              | predominance   |                  |                        | per dL    | per µL in 20% | adenosine deaminase (> 10 U     |
|              | progressing to |                  |                        | (1,000 to | of cases      | per L [166.67 nkat per L};      |
|              | lymphocyte     |                  |                        | 2,000 mg  |               | "pellicle" appearance of CSF‡   |
|              | predominance   |                  |                        | per L)    |               |                                 |
| Viral        | lymphocyte     | Usually normal;  | Usually normal         | Normal    | Usually 100   | PCR test performed, other tests |
|              | predominance:  | decreased in     |                        | or mildly | to 1,000 per  | include CSF lactate (low),      |
|              | possible PMN   | 25% of patients  |                        | elevated  | µL: higher in | Gram stain, CSF or serum        |
|              | predominance   | with mumps:      |                        |           | patients with | immunoglobulin M antibodies     |
|              | in early       | mild decrease    |                        |           | enterovirus   | for arboviruses,                |
|              | infection      | possible in      |                        |           | infection     | electroencephalography or other |
|              |                | patients with    |                        |           | (elevated red | neuroimaging for suspected      |

| HIV | infection | blood   | cell     | encephalitis |
|-----|-----------|---------|----------|--------------|
|     |           | count   | possible |              |
|     |           | in      | patients |              |
|     |           | with    | herpes   |              |
|     |           | infecti | on)      |              |

\*-Most Commonly Streptococcus Pneumonia, Haemophilus influenzae, Listeria monocytogenes, and Neisseria meningitidis.

†-False-Positive results can occur if blood is present in the CSF.

‡ -Cobweb-like clot that forms after CSF is allowed to stand for a short time

#### **4.6.** Post – analytical stage:

#### **4.6.1** Reporting of microscopy and culture results:

- **4.6.1.1** All results, cell count data and differential, will be reported in the LIS and results released to the physician within one hour of receipt in the laboratory.
- **4.6.1.2** Before results are released, compare results of microbiology and chemistry. If discrepancies are detected between results, testing must be repeated if sample volume permits.
- **4.6.1.3** If the problem cannot be resolved, notify the attending physician and document all actions taken.

| RBC                        | Report numbers of RBC cell/ mm3 ( µL)                       |
|----------------------------|-------------------------------------------------------------|
| WBC                        | Report numbers of WBC cell/ mm3 ( µL)                       |
| Polymorphs<br>/Lymphocytes | Report PMNs and lymphocytes as percentages of the total WBC |
| Gram stain                 | Report any finding in the gram stain                        |

#### 4.6.2 Cell count reporting:

#### 4.6.3 Culture reporting:

- 4.6.3.1 Negative report: Send negative report after 48 hrs incubation."No growth, after 48 hrs of incubation.
- **4.6.3.2 Positive report**: Quantitate and report all isolates with appropriate susceptibilities.

#### 4.6.3.3 Reference ranges of Normal CSF values:

| Leucocytes   | Neonates             | less 28 days         | 0-30 cells x $10^{6}/L$         |
|--------------|----------------------|----------------------|---------------------------------|
|              | Infants              | 1 to 12 months       | 0-15 cells x 10 <sup>6</sup> /L |
|              | Children/Adults      | 1 year +             | 0-5 cells x 10 <sup>6</sup> /L  |
| Erythrocytes | No RBCs should be pr | resent in normal CSF |                                 |

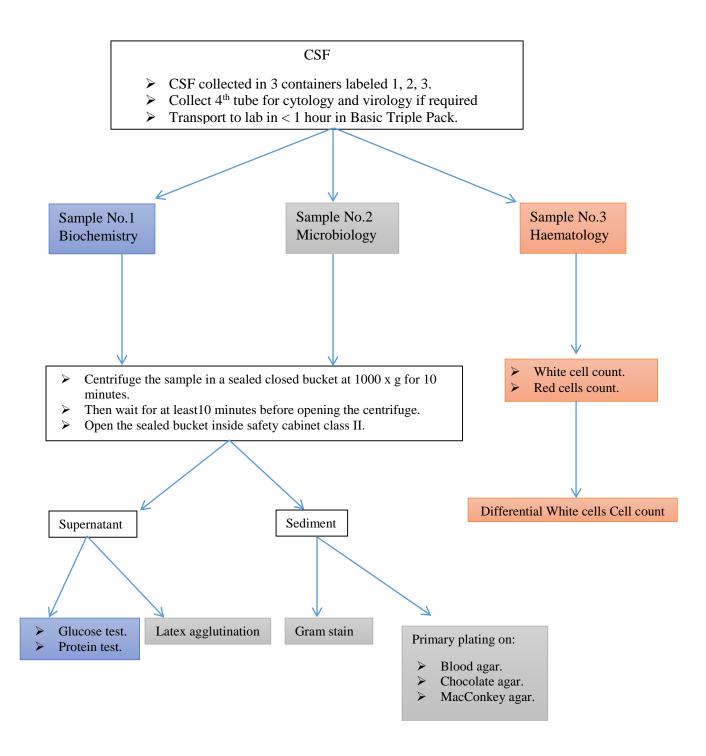
| Glucose  | Neonates        | less 28 days         | 1.94-5.55 mmol/L |
|----------|-----------------|----------------------|------------------|
|          | Infants         | 29 to 58 days        | 1.55-5.55 mmol/L |
|          |                 | 2-12 months          | 1.94-5.0 mmol/L  |
|          | Children/Adults | 1 year +             | 2.22-4.44 mmol/L |
| Proteins | Neonates        | less 28 days         | 0.65-1.5 g/L     |
|          | Infants         | 29-56 days           | 0.5-0.9 g/L      |
|          | Children        | 2 months to 18 years | 0.05- 0.35 g/L   |
|          | Adults          | over 60              | 0.15-0.6 g/L     |
|          |                 | 18 to 60             | 0.15-0.45 /L     |
|          |                 |                      |                  |

# 5. Responsibility

- 5.1. Responsible staff:
  - To ensure the adherence to critical result communication procedure
  - To facilitate the alternative channels once needed

# 5.2. Quality manager /officer

- To follow up the implementation of the procedure
- To monitor regularly communication of critical results and raise nonconformance with corrective action once needed.
- 5.3. All lab staff:
  - To adhere to the procedure.
  - To document record and release results as recommended
  - To report test failures or incident


| Version | Description     | Review Date |  |
|---------|-----------------|-------------|--|
| 1       | Initial Release | May 2026    |  |
|         |                 |             |  |
|         |                 |             |  |

# 6. Document History and Version Control

# 7. References

| Title of book/ journal/ articles/ Website          | Author         | Year of   | Page  |
|----------------------------------------------------|----------------|-----------|-------|
|                                                    |                | publicati |       |
|                                                    |                | on        |       |
| investigation of cerebrospinal fluid bacteriology, | the standards  | 31.05.17  | page  |
| uk standards for microbiology investigations       | unit, public   |           | 6     |
|                                                    | health England |           |       |
| District laboratory practice in tropical countries | monica         | -         | -     |
| part 2second edition.                              | cheesbrough    |           |       |
|                                                    |                |           |       |
| Pro6.4-e-04 cerebrospinal fluid sop.doc            | johnshopkins   | -         | -     |
|                                                    | university     |           |       |
|                                                    | baltimor.      |           |       |
| Microbiology standard operating procedure.         | global health  | -         | -     |
|                                                    | network        |           |       |
| Cerebrospinal Fluid Analysis Am Fam                | BRIAN          | 2021      | 103   |
| Physician.;                                        | SHAHAN, MD,    |           | (7):4 |
|                                                    | EDWIN Y.       |           | 22-   |
|                                                    | CHOI, MD, MS,  |           | 428   |
|                                                    | AND            |           |       |
|                                                    | GILBERTO       |           |       |
|                                                    | NIEVES, MD     |           |       |

#### 8. Annexes: Processing of CSF algorithm.



Note: - Save the remaining CSF in micro-tube inside double specimen bag inside the fridge at 4°C.

MoH/DGSMC/SOP/029/Vers.01

May 2023